156 research outputs found

    Moving object detection using adaptive subband decomposition and fractional lower order statistics in video sequences

    Get PDF
    Cataloged from PDF version of article.In this paper, a moving object detection method in video sequences is described. In the 3rst step, the camera motion is eliminated using motion compensation. An adaptive subband decomposition structure is then used to analyze the motion compensated image. In the “low–high” and “high–low” subimages moving objects appear as outliers and they are detected using a statistical detection test based on fractional lower-order statistics. It turns out that the distribution of the subimage pixels is almost Gaussian in general. On the other hand, at the object boundaries the distribution of the pixels in the subimages deviates from Gaussianity due to the existence of outliers. By detecting the regions containing outliers the boundaries of the moving objects are estimated. Simulation examples are presented. (C) 2002 Elsevier Science B.V. All rights reserved

    Adaptive methods for dithering color images

    Get PDF
    Cataloged from PDF version of article.Most color image printing and display devices do not have the capability of reproducing true color images. A common remedy is the use of dithering techniques that take advantage of the lower sensitivity of the eye to spatial resolution and exchange higher color resolution with lower spatial resolution. In this paper, an adaptive error diffusion method for color images is presented. The error diffusion filter coefficients are updated by a normalized least mean square-type (LMS-type) algorithm to prevent textural contours, color impulses, and color shifts, which are among the most common side effects of the standard dithering algorithms. Another novelty of the new method is its vector character: Previous applications of error diffusion have treated the individual color components of an image separately. Here, we develop a general vector approach and demonstrate through simulation studies that superior results are achieved. © 1997 IEEE

    Robust direction of arrival estimation in non-Gaussian noise

    Get PDF
    Cataloged from PDF version of article.In this correspondence, a nonlinearly weighted least-squares method is developed for robust modeling of sensor array data. Weighting functions for various observation noise scenarios are determined using maximum likelihood estimation theory. Computational complexity of the new method is comparable with the standard least-squares estimation procedures. Simulation examples of direction-of-arrival estimation are presented

    QR-RLS algorithm for error diffusion of color images

    Get PDF
    Printing color images on color printers and displaying them on computer monitors requires a significant reduction of physically distinct colors, which causes degradation in image quality. An efficient method to improve the display quality of a quantized image is error diffusion, which works by distributing the previous quantization errors to neighboring pixels, exploiting the eye's averaging of colors in the neighborhood of the point of interest. This creates the illusion of more colors. A new error diffusion method is presented in which the adaptive recursive least-squares (RLS) algorithm is used. This algorithm provides local optimization of the error diffusion filter along with smoothing of the filter coefficients in a neighborhood. To improve the performance, a diagonal scan is used in processing the image, (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00611-5]

    Detection of microcalcifications in mammograms using higher order statistics

    Get PDF
    Cataloged from PDF version of article.A new method for detecting microcalcifications in mammograms is described. In this method, the mammogram image is first processed by a subband decomposition filterbank. The bandpass subimage is divided into overlapping square regions in which skewness and kurtosis as measures of the asymmetry and impulsiveness of the distribution are estimated. The detection method utilizes these two parameters. A region with high positive skewness and kurtosis is marked as a region of interest. Simulation results show that this method is successful in detecting regions with microcalcifications

    Moving object detection using adaptive subband decomposition and fractional lower-order statistics in video sequences

    Get PDF
    In this paper, a moving object detection method in video sequences is described. In the first step, the camera motion is eliminated using motion compensation. An adaptive subband decomposition structure is then used to analyze the motion compensated image. In the "low-high" and "high-low" subimages moving objects appear as outliers and they are detected using a statistical detection test based on fractional lower-order statistics. It turns out that the distribution of the subimage pixels is almost Gaussian in general. On the other hand, at the object boundaries the distribution of the pixels in the subimages deviates from Gaussianity due to the existence of outliers. By detecting the regions containing outliers the boundaries of the moving objects are estimated. Simulation examples are presented. © 2002 Elsevier Science B.V. All rights reserved

    Correlation Tracking Based on Wavelet Domain Information

    Get PDF
    Tracking moving objects in video can be carried out by correlating a template containing object pixels with pixels of the current frame. This approach may produce erroneous results under noise. We determine a set of significant pixels on the object by analyzing the wavelet transform of the template and correlate only these pixels with the current frame to determine the next position of the object. These significant pixels are easily trackable features of the image and increase the performance of the tracker

    2-D adaptive prediction based Gaussianity tests in microcalcification detection

    Get PDF
    With increasing use of Picture Archiving and Communication Systems (PACS), Computer-aided Diagnosis (CAD) methods will be more widely utilized. In this paper, we develop a CAD method for the detection of microcalcification clusters in mammograms, which are an early sign of breast cancer. The method we propose makes use of two-dimensional (2-D) adaptive filtering and a Gaussianity test recently developed by Ojeda et al. for causal invertible time series. The first step of this test is adaptive linear prediction. It is assumed that the prediction error sequence has a Gaussian distribution as the mammogram images do not contain sharp edges. Since microcalcifications appear as isolated bright spots, the prediction error sequence contains large outliers around microcalcification locations. The second step of the algorithm is the computation of a test statistic from the prediction error values to determine whether the samples are from a Gaussian distribution. The Gaussianity test is applied over small, overlapping square regions. The regions, in which the Gaussianity test fails, are marked as suspicious regions. Experimental results obtained from a mammogram database are presented

    Detection of underdeveloped hazelnuts from fully developed nuts by impact acoustics

    Get PDF
    Shell-to-kernel weight ratio is a vital measurement of quality in hazelnuts as it helps to identify nuts that have underdeveloped kernels. Nuts containing underdeveloped kernels may contain mycotoxin-producing molds, which are linked to cancer and are heavily regulated in international trade. A prototype system was set up to detect underdeveloped hazelnuts by dropping them onto a steel plate and recording the acoustic signal that was generated when a kernel hit the plate. A feature vector comprising line spectral frequencies and time-domain maxima that describes both the time and frequency nature of the impact sound was extracted from each sound signal and used to classify each nut by a support-vector machine. Experimental studies demonstrated accuracies as high as 97% in classifying hazelnuts with underdeveloped kernels

    QR-RLS algorithm for error diffusion of color images

    Get PDF
    Printing color images on color printers and displaying them on computer monitors requires a significant reduction of physically distinct colors, which causes degradation in image quality. An efficient method to improve the display quality of a quantized image is error diffusion, which works by distributing the previous quantization errors to neighboring pixels, exploiting the eye's averaging of colors in the neighborhood of the point of interest. This creates the illusion of more colors. A new error diffusion method is presented in which the adaptive recursive least-squares (RLS) algorithm is used. This algorithm provides local optimization of the error diffusion filter along with smoothing of the filter coefficients in a neighborhood. To improve the performance, a diagonal scan is used in processing the image
    corecore